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Abstract. We examine theoretically the two-dimensional free-convective flow in a parallel-walled cell with vertical 
walls at non-uniform temperature; this temperature variation is such that similarity solutions for the flow and 
temperature fields are possible. Both symmetric and asymmetric boundary conditions are considered. In the former 
case we find that in addition to a trivial symmetric solution, corresponding to stagnant flow, there are non-trivial 
steady symmetric solutions and also steady asymmetric solutions for certain ranges of Rayleigh number. The 
temporal stability of all these solutions is also investigated and the nature of the bifurcations examined; these 
include bifurcations of pitchfork, transcritical and Hopf types. The breaking of symmetry is studied and also the 
effect on the flow character of different Prandtl numbers. 

1. Introduction 

The use of a fluid as a coolant for industrial purposes has a long history. In most cases the 
coolant is forced over a hot solid surface which is cooled as a result. In other cases the fluid 
motion is generated because the fluid nearer the hotter region becomes lighter and so gives 
rise to what is termed natural or free convection. In both cases the underlying function of the 
moving fluid is to disperse the heat although the efficacy of such heat transfer is greatly 
enhanced with forced convection. However, we should remark that when rotation is present, 
so as to increase the body force, the heat transfer can be significantly increased (Schmidt 

[11). 
It is not uncommon in some cases to construct a series of fins projecting from the hot 

surface in order to enhance the transfer of heat. More topically, natural convection cooling is 
also important in electronic cabinets containing circuit cards: the cards are so aligned as to 
form vertical channels; see Said and Krane [2] and also for further references. With this in 
mind we have, in this paper, focussed attention on the two-dimensional free-convective flow 
in a cell formed by such fins or cards. Because of the cooling nature of such flows we model 
the physical problem by specifying the non-constant temperature on the cell walls; this is 
done in a particular way so that a similarity solution is possible which results, when the flow 
is steady, in the Navier-Stokes and temperature equations being reduced to a sixth-order 
system of ordinary differential equations. The problem contains three parameters: Ra, the 
Rayleigh number, Pr, the Prandtl number and/x, a parameter which measures the asymmet- 
ry of the imposed temperature on the cell walls. We note that problems involving free 
convection in tubes have been studied by Lighthill [3] and by Ostrach and Thornton [4]. 

When /x = 1 the problem is symmetrical about the central plane of the cell although we 
show that in addition to symmetrical solutions there are asymmetric solutions for a range of 
Rayleigh numbers. We also show for this value of/x that, for all Ra, in addition to the trivial 
(stagnant) symmetric solution, there is a non-trivial symmetric solution: we find that on this 
solution branch the temperature becomes singular (blow-up) for Ra = 0, although the flow 
velocities remain finite. 
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We also formulate the eigenvalue problem that governs the temporal  stability of such flows 

and we are able to categorise the solutions found into stable and unstable flows. In so doing 
we also show the presence of a Hopf  bifurcation and, as a result, we infer the existence of 
periodic solutions. 

Finally, we consider the effects of a cell with asymmetrically heated walls corresponding to 
/~ ~ 1. We obtain certain characteristics including the loci of some of the bifurcation points 
which delineate the regions of stability and of the periodic solutions. 

2. Formulation of the problem 

Consider the unsteady flow of an incompressible fluid with velocity field u and temperature  

field T. The equation governing the motion when the fluid properties are constant can be 
written 

OoJ + u .17¢o = oJ "17u + 17 x F + v~72oj (2.1) 
Ot 

where t denotes time, ~o =17 x u is the vorticity, F is the body force and u the kinematic 
viscosity of the fluid. The equation of continuity for an incompressible fluid is 

V . u  = 0 (2.2) 

and the temperature  field satisfies 

0 T + u" VT o ~ V 2 T  (2.3) 
Ot ' 

where a is the thermal diffusivity of the fluid. Viscous dissipation has been neglected. The 
fluid motion results solely from the buoyancy effects. 

We choose a Cartesian frame such that the plane wails have equations y = + h with the 
direction of Ox vertically upwards and the flow is assumed to be two-dimensional in the 
xy-plane of the space Oxyz. The Boussinesq approximation is also made, in the usual 

notation, so that we write F = (gf l[T - To], 0, 0), where Tc is a reference temperature and/3 
is the volumetric-expansion coefficient. 

Then we seek solutions of equations (2.1)-(2.3)  subject to the boundary conditions 

u = 0  o n y = ± h ,  

T =  rc(1  - h - i x )  on y = - h  , T = T c ( 1  - txh-lx) on y = h ,  
(2.4) 

where /x  is a non-dimensional parameter.  Note that these represent wall temperatures which 
decrease with increasing x. The temperature  conditions in (2.4) admit of a more general 
form to the extent of a multiplicative factor of the term in x; this factor provides a 
dimensionless measure of the temperature variation. 

The governing equations may be rendered dimensionless by writing 

T = Tc(1 - T ' ) ,  r = h r ' ,  u = a h - l u  ' , t = h2a-i t ' ,  (2.5) 
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and the appropriate pressure is scaled according to p = polZh-2p '. We also introduce a 
streamfunction q,' such that u ' =  O6'/Oy', v ' = - O q / / O x '  and to '=  (0, 0, to'), where w ' =  
--V2~ ', SO that equations (2.1)-(2.3) may be written 

Pr ~{O(V2+)/Ot + O(V2~, O)/O(x, y)} = - R a  OT/Oy+V4~,  (2.6) 

OT/Ot + 0(r, y) =V2 , (2.7) 

on omitting the dashes. In this formulation Pr = t,/a is the Prandtl number and Ra = g[3 Tch3/ 
va is the Rayleigh number. The boundary conditions become 

O = ~ v = 0  o n y = - + l ,  

T = x  o n y = - l ,  T=Ixx  o n y = l ,  
(2.8) 

and we note their symmetry about the centre-plane of the channel in the case Ix = 1. The 
replacement of Ra by - R a  in the system (2.6)-(2.8) is equivalent to the wall temperatures 
increasing with increasing x, a configuration that would be expected to be stable. 

Because of the special form of the boundary conditions we now seek a similarity solution 
of the Hiemenz type 

0(x, y, t, Ra, Pr, IX) = x f (y ,  t, Ra, Pr, IX), 

T(x, y, t, Ra, Pr, Ix) = x g(y,  t, Ra, Pr, Ix). 
(2.9) 

It then follows that such a solution is possible if f, g satisfy 

Pr-l{fyy, +Lfyy-ffyyy}  

g, + f y g -  fgy = gyy , 

= - R a  gy + fyyyy , 
(2.10) 

and are subject to 

f = f y  =0  o n y = - + l ,  

g = l  o n y = - l ,  g = i x  o n y = l .  
(2.11) 

We may assume without loss of generality that IX lies in the range [ -1 ,  1]: a simple rescaling 
may be applied to place Ix in this range. 

Equations (2.10) are, for Ra ~ 0, coupled diffusion equations and it should be noted that 
other diffusion problems have been considered in which the driving mechanism is suction (or 
injection) at the walls y = -+1 (Zaturska, Drazin and Banks [5]) and when the flow is driven 
by accelerating walls (Watson, Banks, Zaturska and Drazin [6]). 

The steady analogues of the equations (2.10) are obtained by writing f (y ,  t, *)= F(y ,  *), 
g(y ,  t, *) = G(y ,  *) where an asterisk represents dependence on the parameters Ra, Pr, IX; 
then the equations are 
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p r - I ( F ' F  " -  FF"') = - R a  G'  + F iv , 

F ' G -  FG '  = G " ,  
(2.12) 

with appropriate boundary conditions 

F = F ' = 0  o n y = + l ,  

G = I  o n y = - l ,  G = / x  o n y = l .  
(2.13) 

The solution of (2.12) subject to (2.13), together with certain properties of the solution, will 
form the substance of this paper. 

The temporal stability of such steady solutions may be investigated by writing 

f l y ,  t, *) = F ( y ,  *) + f l ( Y ,  t, * ) ,  

g ( y ,  t, *) = G ( y , * )  + g~(y,  t , * ) ,  
(2.14) 

linearising equations (2.10) for small fl, g~ and considering normal modes with 

fl(Y, t, *) = eStO(y, * ) ,  

g l (Y ,  t, *) = e't~b(y, *) .  
(2.15) 

We find that 

p r - l ( s 0  '' - FO'" + F'O" + F"O' - F'"O) = - R a  4}' + 0 iv , 

sqb - Fch ' + F'  qb + G O ' -  G '  O = ~b" , 
(2.16) 

and the boundary conditions are 

0 = 0 ' = ~ b = 0  o n y = - + l .  (2.17) 

The equations (2.16) with boundary conditions (2.17) constitute an eigenproblem for the 
eigenfunction pair (O(y),  c~(y)) and eigenvalue s. This predicts instability of a specified 
steady flow F, G if Re(s)> 0 for at least one eigenvalue. 

In the numerical investigation of solutions for F, G and for 0, Ob we have used the 
integrated forms of the F and 0 equations. Thus 

Pr- I (F  '2 - FF") = - R a  G +/30 + F " ,  (2.18) 

and 

pr-l(s0 ' - FO" + 2F'O'  - F"O) = - R a  4} + 3'0 + 0",  (2.19) 

where/3o, 70 are constants. 
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3. Some analytical results 

3.1.  The  case  tx = 1 

We consider first the symmetric boundary conditions corresponding to the special case tx = 1. 
There  is then a symmetric trivial solution of system (2.12) and (2.13) namely, 

F = 0 ,  C = 1 ,  (3.1) 

for all Prandtl and Rayleigh numbers. For Ra < 0, which is equivalent to the wall tempera- 
ture increasing with height we expect such a solution to be stable. However,  for Ra > 0 

which corresponds to wall temperature decreasing with height we anticipate that this solution 
will become unstable at some value of Ra. The occurrence of such an instability leads us to 

expect other,  possibly stable, solutions. 
We note from (2.16) that with the trivial steady basic flow (3.1) the exact equations for the 

eigenfunction pair become 

s Pr-  ~0" = - R a  05' + 0 iv , 

s05+o'=05", 
(3.2) 

or, equivalently 

0 vi - s(1 + Pr l)oiv ~- (S 2 Pr 1 _ Ra)0" = 0.  (3.3) 

For the symmetric solution (3.1) there will be both antisymmetric and symmetric modes. 
We use the convention that if 0' and 05 are odd functions of y the mode is called 
antisymmetric, whereas if 0' and 05 are even functions of y the mode is symmetric. For both 

types of modes, boundary conditions to be satisfied by (3.3) are 

0 = 0 ' = 0  and s P r - 1 0 ' " = 0  l' a t y = - l ,  (3.4) 

In what follows we shall confine attention to the special case Pr = 1; this is not a serious 

restriction and we return to this point later (see Appendix). 

Firstly, consider antisymmetric solutions. These are given by 

s = - n  2rr 2 + - X / - ~ ,  O = a X / - f f a [ ( -  1)" - cos nTry] ,  05 = Y a n r r  sin n~-y, (3.5) 

where n = 1, 2 . . . .  and a is a normalising factor. We note that these eigenvalues occur in 

complex conjugate pairs when Ra < 0 and have real parts which are negative and indepen- 
dent of Ra. When Ra > 0 there are two real eigenvalues corresponding to each value of n; 
these coalesce at Ra = 0 to yield s = -n27r  2 there. 

For the symmetric modes there appears to be more than one possibility. For one we write 

= s  + A = s -  (3.6) 

Then At, A satisfy the relation 
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h3_(s - h2_) cosh h_(sinh A+ - A+ cosh h+) = h3(s  - h 2) cosh h+(sinh h - A_ cosh h _ ) .  

(3.7) 

The information contained in equation (3.7) is not immediately obvious and it is useful, 
therefore,  to examine special cases. In the limit as Ra---~ 0, so that A+ ~ A_, we find that the 
only solution is s o = A 2 = - [ ( 2 n  - 1)7r/2] 2 for n = 1, 2 , . . .  where the suffix zero is used to 
indicate Ra = 0. We find that 

00 = 0 ,  4)0 = b cos[(2n - 1)7ry/2] ,  (3.s) 

where b is a normalising factor. (These results are, of course, more readily deduced from 
direct solution of (3.3) with Ra = 0.) 

Before we proceed to consider another special case of (3.7) it is opportune to discuss 
further the limit Ra-->0. In this limit the two equations in (3.2) decouple so that the 
equation for 0, the perturbation in the velocity field, may be solved independently of 4) which 
is related to the temperature  field. From the equation for 0 we find eigenvalues s o = - n 2 7 r  2 

(antisymmetric modes, see equation (3.5)) for n = 1, 2 . . . .  , and s o = _p2, where tan p = p,  

p > 0 with no loss of generality (symmetric modes); the latter have corresponding eigenfunc- 
tions 

00 = c (y  sin p - sin p y ) ,  4)0 = c[½(p cos py - y sin py) + p- l ( cos  p - cos py)] , 

(3.9) 

where c is a normalising factor, which are distinct from those of the previous paragraph 
(equations (3.6), (3.7)). The first three roots for p are 4.49341, 7.72525 and 10.90412 (see 
Abramowitz and Stegun [7]); indeed all the roots are approximated by p = ½(2n + 1 ) T r -  
27r- l (2n + 1) -1 for n = 1, 2 , . . .  and we note that therefore,  as n increases, the correspond- 
ing eigenvalues become very close to those corresponding to the symmetric modes of (3.6), 
(3.7) with Ra = 0 (i.e. s o = - [ ( 2 n  + 1)7r/212 in this notation). Next, taking 0 identically zero 

we find from the 4) equation the eigenvalues s o = - n 2 ~  "2 for n = 1, 2 , . . .  (antisymmetric 
modes) and s o = - [ ( 2 n  - 1)7r/2] 2 for n = 1, 2 , . . .  , the symmetric modes of (3.6), (3.7): the 
corresponding eigenfunctions have already been given for these modes. 

Another  special case of (3.7) (or (3.2)) which is tractable is that of s = 0. It should be 
noted that the values of Ra for which s = 0 are of particular interest in any case since they 
correspond to bifurcation points of the basic solution. Moreover ,  in view of equations (3.2), 
these values of the Rayleigh number Ra will be the same for all values of the Prandtl 

number.  
For  the family of antisymmetric modes (3.5) the value when s = 0 corresponds to 

Ra = n a q ' / " 4  for n = 1, 2 , . . .  which we denote by Ra2n_ 1. Thus, the least value of Ra satisfying 
this property is R a =  "7]" 4 =97.40969. For the symmetric modes (3.6), (3.7) we have 

= A~ = A 2_ = A 2, say, and (3.7) reduces to tanh A = tan A with corresponding eigenfunc- 

tions 

0 = k ( c o s h  A sin Zy - c o s  A sinh Zy) ,  

4) = kA-l(2 cos A cosh A - cosh 3. cos Ay - cos A cosh Zy) ,  
(3.10) 
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where k is a normalising factor. We denote the roots of the transcendental  equat ion by An, 

n = 1 , 2 , . . . .  Thus the least value of Ra is found to correspond to A m = 3.92660 so that 

Ra  = 237.72109. These values of Ra are denoted by Ra2n, n = 1, 2 . . . . .  (The roots of 

tanh A = tan A are well approximated by A, = ~r(n + ~) for n = 1,2 . . . . .  ) Direct solution of 

the system (3.2) with s = 0 for symmetric modes (0 odd, ~b even) yields only the solution 
(3.10) so that Ra2n = A 4 gives the only values of the Rayleigh number  at which the 

eigenvalues corresponding to the symmetric modes can be zero. 

From the above results, supplemented by some numerical integrations which are described 

in the next section, we have plotted the real part  of the eigenvalue, Re(s),  versus Ra in Fig. 

1. We have adopted the notation that q2 denotes the antisymmetric eigenvalues and r2 
denotes  the symmetric  eigenvalues so that for example q+ =--n27T2+ X/Ra while q~-= 

--r/2yr 2 - - X / R a .  However ,  the first symmetric eigenvalue, which is exceptional and takes the 

value - ~r2/4 at Ra = 0, is denoted by r 0. From the analytical results we anticipate that there 

will be a pitchfork bifurcation at Ra = Ra 1 where Ra 1 = 97.40909, associated with a loss of 

stability of the symmetric solutions for Ra greater  than this value. Similarly at Ra  = Ra 2 

where Ra 2 = 237.72109 we expect a transcritical bifurcation to occur. Indeed,  in the next 
section we do find that there is a pitchfork bifurcation and a transcritical bifurcation at Ra~ 

and Ra 2 respectively and we further anticipate other pitchfork bifurcations and transcritical 

ones at  Razm_l and Ra2m respectively for m = 2, 3 . . . . .  
The reader  may find it helpful if we summarisc some of the eigenvalue results at this 

juncture.  The values s o of s at Ra = 0, which we write qo,,, roo, r(~,, for the antisymmetric and 

symmetr ic  eigenvalues, are 

+ q0 + q02 qol = 1 = - 9 . 8 7 0 ,  q02 = = - 3 9 . 4 7 8 ,  

+ - 2 0 . 1 9 7 ,  = -22 .207 roo = - 2 . 4 6 7 ,  rol = roi . 

Further ,  the values of Ra for the first six bifurcations are 

- 300  - 2 0 0  - 1 0 0  
_ - - r o  

Re(s )  

Re (q l )  - R.e(q~) 

_.._2 ~. ~:I-_L~ - ~, ~__~! . . . . . .  

Re(q~-) ffi R e ! q ~ )  . . . . . . . . . . . .  

Ra 2 
i 

~do . . . .  200 300 

. . . . .  r'~ 
- 1 0  , .  ~ ' 

" -20  

- 4 0  ~ - -  ~ r ~  

-60 - q~ 

Ila 

Fig. i. Some antisymmetric (q~)  and symmetric (r o and r2)  eigenvalues (n = 1 , 2 , . . . )  corresponding to the trivial 
basic solution when/x = 1. The full curves represent the real antisymmetric eigenvalues, the dashed curves represent 
the real symmetric eigenvalues and the chain curves represent the real part of the complex eigenvalues. 
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Ral = 97.41, Ra 3 = 1558.55, Ra 5 = 7890.14, 

Ra 2 = 237.72, R a  4 = 2496.49, Ra 6 = 10867.58. 

We anticipate that the odd suffices indicate supercritical pitchfork bifurcations and the even 
suffices indicate transcritical bifurcations, 

3.2. The case Ix ~ 1, Ra small 

When /x ¢ 1 there is no analytic solution of (2.12) subject to (2.13) for all Ra. For small 

Rayleigh number the regular solution is unique for each value o f /x :  we write 

G ( y , * )  = Go(y, Ix) + Ra Q ( y ,  Ix) + ' "  

F ( y , * ) = R a F l ( y ,  ~ ) + . . . ,  a s R a - - * 0 ,  
(3.11) 

and, on solving at successive approximations, we find 

Go(Y , i t ) =  ½ ( l - y )  + ½/.t(1 + y ) ,  

1 y2)2 
El (y  , /x )=  - ~-8 (1 - / x ) ( 1  - , 

and 

C,(y, t . )-  (1 - g)~ (1 - y2)(17 + 2y 2 - 3y 4) (1 - / x  2) 
2880 1440 

y ( 7 _ 3 y 2 ) ( 1  _ y 2 ) .  

(3.12) 

We proceed similarly for the eigenfunctions (0, 4~) and find that the leading order  terms 

(00, 4~o) consist of three families: there are modes that are antisymmetric, symmetric and 
asymmetric. They are 

(i) antisymmetric modes: 

S 0-~- - -n2 'Tr  2 0 0 = 0 4, 0 = a sin nrry,  (3.13) 

where n = 1, 2 . . . .  and a is a normalising factor. 

(ii) symmetric modes: 

s o = - [ ( 2 n -  1)7r/2] 2 , 00 = 0 ,  ~0 = b cos[(2n - 1)Try/2],  (3.14) 

where n = 1, 2 . . . .  and b is a normalising factor. 

(iii) asymmetric modes: 

So = _ p 2 ,  0 o ---- c(y  sin p -- sin py) 

C 
th0 = g {(1 + ~) [4p- l (cos  p - cos py) + 2(p  cos py - y sin py)] 

+ (1 - / x ) [ ( y  2 - 1) sin py + 3p-Z(py cos py - sin py) ]} ,  

(3.15) 
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where tan p = p ,  p > 0 ,  and c is a normalising factor. We note that when ~ = 1 (3.15) 
reduces to (3.9). 

It is clear, since s < 0 for each of these modes, that the basic solution as given by the terms 
of O(1) in (3.11) is stable. 

4. Numerical  results 

It has already been noted that there are certain simplifications in the analysis if the Prandtl 
number is one and we continue with this special value in this section, although we also note 
that there is no great loss of generality in so doing (see Appendix). 

As we have seen in §3 some of the eigenvalues corresponding to the trivial basic flow are 
known analytically, some for special values of the Rayleigh number and some for all 
Rayleigh numbers. We begin this section by presenting numerical results for other eigen- 
values: in particular we have obtained the eigenvalues that are continued from those that at 
R a = 0  take the values -~-2/4, _p2 and -9~-2/4 where p is the first positive root of 
tan p = p. This has been done by using the shooting method (as have all the other numerical 
integrations of this section) to solve the eigenvalue problem as defined by (3.2) and (3.4). 
The results are shown in Fig. 1 where we have plotted Re(s) versus Ra. We have only 
plotted the most significant eigenvalues in the range -300 <~ Ra ~< 300, to give a flavour of 
the structure; as mentioned earlier, the important results are those values of the Rayleigh 
number where Re(s) = 0 (which are summarised near the end of §3.1), because we anticipate 
the possibility of bifurcations at such points. Since there exists an eigenvalue s > 0  for 
Ra > 97.4091, then the trivial solution is unstable for Ra > Ra 1. It is of interest to note that 
the symmetric eigenvalues, which pass through the points - 9 7 r 2 / 4 (  = -22.2066) and 
-20.1969 at Ra = 0, coalesce at Ra = - 1 . 1 4 3  so that for R a < - 1 . 1 4 3  the eigenvalues are 
complex. 

As the Rayleigh number increases we recall that the first bifurcation we meet is at 
R a = R a  1 = ~-4=97.4091 in the neighbourhood of which we anticipate asymmetric 
so lu t ions -even  though the boundary conditions are symmetric. We have integrated the 
system of equations defined by (2.12) subject to the symmetric boundary conditions (2.13) 
with k~ = 1 and we have indeed found asymmetric solutions in the neighbourhood of 
R a =  Ral ,  and have continued with the asymmetric branch as Ra increases. We note 
incidentally that the pitchfork bifurcation is supercritical and that the analytic structure of 
the solution in the vicinity of Ra -- Ra~ is given in §5. 

To appreciate these results it is convenient to show the variation of a norm or property of 
the solution in terms of Ra. In this paper we have chosen to use the variation of G ' ( - 1 ) ,  
which is related to the heat transfer, and of F"( -1) ,  which is related to the skin-friction, at 
the wall y = -1 .  These results are shown in Figs 2 and 3: it should be noted that the trivial 
solution, G =- 1, F-= 0, is represented by the Ra-axis in both figures. Referring to Figs 2 and 
3 we see that the pair of asymmetric solutions that arise at Ra = Ra~ coalesce at Ra = 
Ral, 1 = 125.36 to form a single non-trivial symmetric solution t h e r e - i n  other words, a 
subcritical pitchfork bifurcation is formed at Ra~.~. Subsequent bifurcations from this 
non-trivial symmetric solution branch will be labelled Ra~. 2, Ral.3, etc. We have continued 
with the tabulation of the non-trivial symmetric solution for both Ra <> Ral, ~. Firstly, for 
R a <  Ra~, 1 we find as Ra~0 that G ' ( - 1 ) - - - ~  so that there is blow-up in the heat transfer: 
indeed at R a = 0  we obtain Ra G ' ( - 1 ) = 2 0 5 . 8 0  and F" ( -1 )=25 .27 .  (These results are 
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Ral,2 

1 
5~ ~ ,~o 200 ~o 3Jo ~" 

t 
l Ra 2 

Ra 1 

Fig. 2. Values of G ' ( - 1 )  versus Ra, showing two pitchfork bifurcations (at Ra I and Ral,~) and one transcritical 
bifurcation (at Ra2). 

shown graphically in Figs 4 and 5). It is sufficient to note at this stage that for Ra < Rat, 1 no 
further bifurcations were found on this non-trivial symmetric branch. Secondly, for Ra > 
Ral,  1 the continuation of the solution branch is found to form part of the transcritical 
bifurcation at Ra = Ra: = 237.72 and referred to in §5. We note incidentally that in terms of 
the state variable F"( -1 )  the solution branches are of typical transcritical type at Ra = Ra 2 

F"(-I) 

2O 

10 

Ra 

I l O0 I 5 0  200 l 5O 

Ra I Ra2 

Fig. 3. Values of F"(-1)  versus Ra, showing two pitchfork bifurcations (at Ra 1 and Ral,t) and one transcritical 
bifurcation (at Ra2). 
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G ' ( - 1 )  

I 

-[000 

1 .6  

1 .2  

0 . 8  

0.4 

- 0 . 4  - 

~ R a l ,  4 , , 

t looo ~ 2ooo t 
Ra I R a  2 Ra 3 Ra 4 

- 3 . 0  

- 4 . 2  

J 

Ra 

Fig. 4. Values of G ' ( - 1 )  versus Ra corresponding to the non-trivial symmetric solution. The values of Ra at which 

bifurcations occur are indicated. 

whereas this is not so with the state variable G ' ( - 1 ) :  this distinction is also noted in the 

analytical structure of the local analysis of §5. 
We have continued with the integrations on the non-trivial symmetric branch over the 

range - 5 0 0  ~< Ra ~< 3000 and most of these results are shown in Figs 4 and 5. In order to help 
the reader we have marked with a vertical arrow below the Ra-axis, those values of Ra, i.e. 
R a , ,  at which there is a bifurcation point in the trivial solution; also we have used downward 

F " ( - I )  

80 

- 2 0  

,0;0 { 2;00 ~ . a  
Ra 3 Ra 4 

Fig. 5. Values of F " ( - 1 )  versus Ra  corresponding to the non-trivial symmetric solution. The values of Ra at which 

bifurcations occur are indicated. 
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pointing arrows above the Ra-axis to indicate the values R a l ,  n. Note that R a  2 coincides with 
Ral, 2 because the non-trivial solution branch intersects the trivial solution branch. It will be 
noted that we have indicated the known bifurcation points Ral,l, Ral,2, Ral ,  4 but not  Rat,3; 
we have not found Ra~,3 although we anticipate such a subcritical pitchfork bifurcation point 
to exist in the same way that we assume that asymmetric solutions occur for Ra near to but 
greater than R a  3. In short, we assume that the topology of the solution branches in the 
region Ra~ ~< Ra ~< Ra 2 is repeated by the solution branches in R a  3 ~< Ra ~< R a  4. We note that 
although the solutions in this region correspond to unstable flows which are physically 
non-realisable, it is possible that such solutions may be significant in the interpretation of the 
possible unsteady solutions of the coupled diffusion equations as defined by (2.10) and 
(2.11). 

In order to help the reader visualise the flow and temperature r6gimes, we present in Fig. 
6, the velocity profiles and the corresponding temperature profiles at representative values of 
Ra: these values were chosen by reference to Fig. 2. We show at R a =  106 (>Ra~) and 
R a =  120 ( < R a l , 1 )  the steady asymmetric solutions; at R a =  130 ( > R a l , l )  there are no 
steady asymmetric solutions and we present the non-trivial steady symmetric solution. 

We have determined a number of eigenvalues corresponding to the asymmetric and the 
non-trivial symmetric solutions discussed above; we show some of these in Fig. 7 where we 
have plotted Re(s) versus Ra but have confined attention to a relatively small range of Ra 
which includes the asymmetric solutions in Ra 1 < Ra < Ra~,~. We notice that, after the first 
zero in an eigenvalue at Ra~, the continuation of the first two eigenvalues along the 
asymmetric branch leads to a coalescing of the eigenvalues at Ra = 100.7; beyond this value 
of Ra the eigenvalues become complex with Re(s) < 0 at first so that the flow remains stable. 
At Ra = 112.65 the real part of these complex eigenvalues vanish and we infer the existence 
of a Hopf bifurcation- we denote this value by Ra n. 

For Ra > Ra H we anticipate the existence of periodic solutions. As Ra increases beyond 
Ra n the real part of the complex eigenvalues increases and at Ra = 122.7 we note the 
appearance of two real eigenvalues; both are positive corresponding to unstable modes. One 
of these eigenvalues vanishes at R a =  Ra~,l where RaL1 = 125.36, which indicates the 

F' (y) G(y) 

t. 5 Z' '\ 
t ~ ~x '~t I. 6 

/,.-., \ 04 , ' / /  , , '  

1,0 

I.// 
%'--_2. O ~  -0.8 

Y 

(a) (b) 
Fig. 6. (a) Velocity profiles and (b) tempera ture  profiles at representat ive values of the Rayleigh number ,  The  
dashed curves correspond to the asymmetr ic  flow at Ra = 106 and the chain curves to the asymmetr ic  flow at 
Ra  = 120. The full curve corresponds to the non-trivial symmetr ic  flow at Ra = 130. 
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Fig. 7. Some eigenvalues corresponding to the trivial symmetric, the asymmetric and to the non-trivial symmetric 
basic solutions. The full curves represent the real 'antisymmetric' modes (q~),  the dashed curves represent the real 
'symmetric' modes (r0) and the chain curve represents the real part of the complex eigenvalues. 

appearance of the subcritical pitchfork bifurcation resulting in the existence of the non-trivial 
symmetric branch. We have found the continuation of these eigenvalues on the non-trivial 

symmetric branch for a wide range of values of Ra but we have only plotted those in the 
range 108 ~ Ra ~ 134. However ,  from our results we find that the eigenvalue that passes 
through 1.4 at Ra = Ral. 2 continues to decrease as Ra increases, and vanishes at Ra = 
Ra~.4 = Ra4 corresponding to the second transcritical bifurcation point. From this it might 
appear  that, for Ra > R a 4 ,  there is only one unstable component  of the set of eigenfunctions 
but it should be remembered that we have not determined the higher order modes. In Fig. 7 
we have used a dashed line to indicate eigenvalues corresponding to symmetric modes and a 
solid line to indicate eigenvalues for antisymmetric modes, and we note the form of the real 
eigenvalues for R a >  122.7; the same scheme for distinguishing the modes is used in 

continuing from those corresponding to a symmetric basic solution to those where the basic 
solution is asymmetric, although these latter modes are themselves no longer symmetric or 
antisymmetric. 

Finally, in this section, we consider the effect of/~ ~ 1, that is, the effect of asymmetry in 

the boundary conditions. As noted earlier, it is sufficient to restrict attention to the range 
- 1  ~ ~ ~ 1. To illustrate the ideas, we show in Fig. 8 the effect of a perturbation in the 
symmetric conditions: we examine the effect of assuming ~ = 0.9999 and note the change 
from a pitchfork bifurcation at ~ = 1 with Ra = Ra 1 to a single turning point. It is opportune,  
at this stage, to introduce some notation. On breaking the symmetry we label the solution 
curve that continues from Ra = 0 by P (primary),  and the branch that includes the turning 
point we denote by S (secondary): S 1 corresponds to those solutions that have evolved from 
the trivial solution and S 2 to those that have evolved from the asymmetric solutions. This 
notation can be extended as k~ varies further from unity and to all Ra: we continue to denote 
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Fig. 8. Values of F"(-1) versus Ra for ~ = 1 and /~ = 0.9999 showing the unfolding of the pitchfork bifurcation. 

the solution curve that continues from Ra = 0 by P but, as it too develops a turning point, 

the branch that has evolved from the trivial solution is denoted by P1 and the other  branch 
by /2 .  We also continue to use S 1 to correspond to those secondary solutions that have 
evolved from the trivial symmetric solution but S 2 represents solutions which have evolved 
from the asymmetric solutions and from the non-trivial symmetric solutions. Symmetry 
breaking occurs at the other bifurcations for a change in/~ resulting in turning points, and we 
have calculated the locus of these turning points as/~ varies. To do this we solve for the basic 
flow and eigenfunctions concurrently with s = 0. The locus of the turning point that 
originates at Ra = Ral, 2 is shown in Fig. 9: we see that as/~ decreases so the turning point 
moves monotonically towards the/.~-axis until a t /~ = - 1  it is at Ra = 50.29. In view of the 

symmetry of the solution about Ra = 0 for /~  -- - 1  we note that there is a turning point at 
Ra = -50 .29  for this value of /~.  We have also determined the locus of the turning point 
starting at/~ = - 1 ,  Ra = -50 .29  with/~ increasing, and, as will be noted in Fig. 9, the value 
of Ra at the turning point appears to tend to minus infinity as # 1'0: we find, for example, 
that the turning point occurs at Ra = -1226.56 when/ . ,  = 0.009. 

In Fig. 10 we also give the loci of the other turning points and we see that the one 
emanating at Ra = Ral and one of those that emanates from Ra = Ra 2 are connected: the 
consequences of this joining are discussed later. Note also that the value of Ra at the second 

turning point, that emanates from Ra = Ra 2, increases as /~ decreases: at /~ = 0.684 the 
turning point is at Ra = 758.00; the consequences of this behaviour are also discussed later. 
We have plotted the loci of the turning points just referred to in Fig. 11 to show the general 

behaviour.  
With t~ = 1 there is, as mentioned earlier, a Hopf  bifurcation at R a =  Ra n where 

R a n = l 1 2 . 6 5 ,  when the flow is asymmetric. In the range R a ~ < R a < R a  2, in which 
asymmetric solutions exist, it is clear that for each value of the Rayleigh number,  Ra, there 
are two steady solutions: one the mirror image (in the channel's mid-plane) of the other.  
Similarly there are two Hopf  bifurcation points, one on each solution branch. To find the loci 
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Fig. 9. Locus of the turning point that  originates at Ra = Ral, 2, /z = 1, for various values o f /x ,  shown as a full 
curve.  The dashed lines represent  the loci of the Hopf  bifurcations. 
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Fig. 10. Loci of  the turning points  originating at Ra = Ral and at Ra = Ra 2 when /x  = 1, together  with the loci of the 
Hopf  bifurcations originating at Ra  = R a ,  w h e n / z  = I, for various values of /z .  
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Fig. 11. Loci of the turning points originating at Ra = Ra 1 and at Ra = Ra 2 when/~ = 1, for various values of/z. 

of these Hopf bifurcation points as/z  varies we have solved for the basic flow and complex 
eigenfunctions concurrently with Re(s) = 0. We show the loci of these bifurcation points in 
Fig. 10 and we note that in both cases the Hopf bifurcation points approach the turning point 
loci as /~ decreases from its value of unity corresponding to symmetry. It may help if we 
show, by means of sketches in Fig. 12, the behaviour of the eigenvalues as/x decreases from 
1 -  until the Hopf bifurcation coincides with the turning point. We anticipate that the point 
at which the loci of the Hopf bifurcation points and of the turning points coincide is a 
Takens-Bogdanov bifurcation (see Guckenheimer and Holmes [8]). No special computa- 
tions were carried out in the vicinity of this point and we merely refer the interested reader 
to the work of Watson, Banks, Zaturska and Drazin [9] for more information. 

We now return to the consequences of the turning-point loci. These enable us to sketch 
the form of the solution curves quite readily. In Fig. 13 we give sketches of the solution 
branches corresponding to F" ( -1 )  for various values of/z. We note that, for 0 < 1 - / ~  ~ 1, at 
least one isola exists with the possibility of others at higher Rayleigh numbers. From Fig. 11 
we see that as/z $0.927 the isola shrinks to a single point and that for /z  < 0.927 this branch 
of solutions ceases to exist. In making these sketches we have not only used the results of the 
turning-point loci but the blow-up results quoted earlier, viz. Ra G ' ( - I ) = 2 0 5 . 8 0  and 
F" ( -1 )  = 25.27: these results are independent of /x  of course. 

5. Local bifurcation theory 

We next consider perturbations of a solution of (2.12) subject to (2.13) in order to 
investigate the bifurcations that occur. Suppose that F =  F 0, G = G O is a solution when 
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Fig. 12. Qualitative sketches of the behaviour of some eigenvalues for various k~. (a) /1 = I , (b) /~ ~0.98, (c) 
/z ~ 0.96. 

R a  = R a  C; we cont inue  to restrict  our  analysis to the case Pr = 1 a l though recognising that  

any change  in Prandt l  n u m b e r  will result  in a change  of  degree  ra ther  than  of  charac ter .  We 

pe r t u rb  this solut ion for  small  e = R a - R a ~ . ,  ant icipat ing that  a series in powers  of  e is 

a p p r o p r i a t e  at a regular  point  but  in powers  of  e 1/2 at a turning point  or  at a p i tchfork  

bi furcat ion.  Accord ing ly  we assume the expansions  

and subst i tu te  t h e m  into the s teady equat ions  (2.12). Equa t ing  coefficients of  e ° de te rmines  

Fo, Go. 
Next  we equa te  coefficients of  e ~/2 and find that  

whe re  the o p e r a t o r  L is def ined by 
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Fig. 13. Qualitative sketches of the solution branches for F"(-1) versus Ra for various values of it, showing the 
presence of an isola. (a) ~ ~0.95, (b) /z =0.928, (c) tz--~ 0.75, (d) /z ~ -0 .5 ,  (e) ~ = -1 .  

for all well-behaved functions u, v. The boundary conditions are 

t 
F1/2(-+1 ) = F1 /2( - -1  ) = G 1 / 2 ( - 1  ) = 0 .  (5 .4)  

Comparison of the system (5.2),  (5.4) with (2.16),  (2.17) leads to the conclusion that at a 
regular point, where s # 0 for all eigenvalues, the only possible solution is the trivial one 
F1/2 = G1/z = 0. We therefore assume that s = 0. Then the system (5.2),  (5.4) has solution 

61/2 

where A is a constant which is arbitrary at this stage but will be determined later. 
Proceeding to terms in e 1, substituting for F1/2, G1/2, and applying a solvability condition 

we find at length that 

11 + A212 = 0 ,  (5.6)  
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where  

II = - f ]  1 0 + G O dy , (5.7) 

F 1 = A2H1 + H 2 , G1 = A 2 K 1  , 

where  

0 '0" - 00"' ] 

K1 

and the funct ions 0 ÷, 4) + satisfy the adjoint  equat ion  

( ) (  + . . . .  + + ) 0 + 0 + ' v - ( F o O + ' ' + 4 F o O  + 4 F o 0  ) + G 0 4 )  +2G04)  + 

L + 4)+ = 4 ) + , , _ ( F o 4 ) + , + 2 F o 4 ) + ) _ R a c O + ,  = 0  
(5.9) 

subject  to 0 + ( - + 1 ) =  0 + ' ( + 1 ) =  4)÷(+1)  = 0. We note  that  non-trivial 0 ÷, 4)+ exist because 
s = 0. Various cases arise depending  on the vanishing or otherwise of the integrals and we 

discuss these below. 

(i) s = 0, 11 # 0 ,  I 2 # 0. Unde r  these circumstances,  F, G each have a power  series in 
+ ( e  s g n  A2) 1/2 with two solutions for  Ra near  Ra c if Ra > Ra~ and none  if Ra  < Ra c when 

A 2 > 0, and two solutions if Ra < Ra C and none  if Ra > Ra C when A 2 < 0 respectively.  The  
bifurcat ion is a turning point  and A 2 = - I 1 / I  2. 

(ii) s = 0, 11 = 0, 12 • 0. In this case A = 0 and F, G have power  series in e with two 
solut ions for  Ra  near  Ra  c (and one  for Ra  = R a c )  i.e. a transcritical bifurcation.  

(iii) s = 0, I~ = 0, 12 -= 0. Then  A is inde te rmina te  at this stage but  we formally write 

(5.lO) 

(5.11) 

(5.12) 

and HI(-+1 ) = HI(_+I  ) = H2(_+1 ) = H ~ ( _ + I ) =  K I ( _ + I ) = 0 .  Proceeding  to terms in e 3/2 and 
applying the solvability condi t ion we find that  A = 0, or 

A 2 = - 13/14 , (5.13) 

where  

/4 =f-'l 

[O+(-H20" + H~O" + H:O - H;O - 4)') + 4) +(-H24 ) '  + H~4))] dy, (5.14) 

[ O + ( - n i o "  + H;O" + nlO' - n*~'O) + 4) +(-nl(~b' + n~4) + KIO' - K~O)] d y .  

(5.15) 

f 
l 

12 : [0+(0 '0  " -  00")  + 4)÷(0'4) - 04)')1 d y ,  (5.8) 
- 1  
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If F 0, G O correspond to a symmetric flow (i.e. F 0 is an even function of y and G O an odd one) 
then the root A = 0 corresponds to a continuation of the same flow and the other two roots 

to asymmetric  flows; F, G have expansions in powers of +-Iel ~/2 so that there are three 

solutions for Ra  near  Ra  c if either Ra > Ra c or Ra < Rac and one if Ra < Ra  c or Ra  > Ra c 

respectively. This pitchfork bifurcation will in general arise if Fo, 49, 49 + are odd functions of 

y and 0, 0 + are even ones, i.e. when s = 0 for an antisymmetric mode.  We would similarly 
expect turning point bifurcations (case (i)) when s = 0 for a symmetric mode.  

Further  progress may be made analytically when the basic flow is the trivial one F 0 = 0, 

G o = 1, for then the eigenfunctions are known at values of Ra when s = 0, and the integrals 

are considerably simplified. At  the first bifurcation point where Ra = Ra 1 = 7r 4 we find that 

11 = I z = 0, i.e. case (iii). We have evaluated the integrals 13, 14 for the corresponding 
antisymmetric mode  given by (3.5) when n = 1 and in this case we find A 2 = - (3 .97r2)  -I. 

This analytic result predicts that 

F " ( -  1) = -1 .590807(Ra  - Ra~) ~/2 + O ( R a  - Ra l )  

and 

G ' ( - 1 )  = 0.161118(Ra - Ra l )  1/2 + O ( R a -  Ra~) as Ra---~ Ra  1 

so that at Ra=97 .40925 ,  F " ( - 1 ) = - 0 . 0 2 0 0 5 7  and G ' ( - 1 ) = 0 . 0 0 2 0 3 2  to first order;  this 

shows excellent agreement  with the corresponding results from direct numerical integration, 
viz. -0.019937 and 0.002032 respectively. The contributions from the terms of order of 

magnitude ( R a -  Ra l )  in the expansions may also be readily evaluated in this case. 

When s = 0 corresponds to symmetric modes and trivial basic solution, 11 = 0 and 12 ¢ 0 so 

that case (ii) applies and thus A -- 0, and the expansion is in powers of e. Then the solution 

(c, 
is obtained on equating coefficients of el; the constant B is arbitrary at this stage. We next 

equate  coefficients of e 2, substitute for F 1 and G~, and apply a solvability condition to find 

that either B = 0 or 

B =  15/16, 

where 

I~ = f~ 
L 1 

1 6 = f ~ l  

(5.17) 

0+49 d y ,  (5.18) 

[0+(0 '0 ' ' -  00"') + 49 +(0'49 - 049')] d y .  (5.19) 

The  root B = 0 corresponds to the continuation of the trivial solution and the other root to a 
symmetric  flow. We have evaluated the integrals 15, 16 analytically for the symmetric  modes 
given by (3.10). We find that 0 ÷ = 0, 49+ = -A449 and B = 5[A 2 cosh A(30A cos A - 8 sin A)] -1 
so that when A = 3.92660 (i.e. Ra C = Ra :  = 237.72109), B = -1 .6452 x 10  -4.  This analytical 
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result predicts that F " ( - 1 ) =  0.90999(Ra- Ra2)+ O ( ( R a -  Ra2) 2) as Ra--~ Ra, so that at 
Ra = 238, F " ( - 1 ) = - 0 . 0 2 5 6  to first order; this shows excellent agreement with F " ( - 1 ) =  
-0.0258, the result of direct numerical integration Of the system (2.12), (2.13) with Pr = 1. 
Note that from the analysis G'(0) = 0 to the same order, a result which is also confirmed by 
direct numerical integration. 

The local analysis given in this section is also applicable to the supercritical pitchfork and 
transcritical bifurcations at Ra, Ra4, etc. providing the appropriate eigensolution is adopted. 
It can also be used to describe the solution in the vicinity of the subcritical pitchfork 
bifurcation at Ra~, 1 (and indeed at subsequent subcritical bifurcations); however, since the 
basic flow and eigensolution are only known by numerical integration, the appropriate 
integrals of this section must be determined numerically. 

6. Conclusion 

In this paper we have presented a body of results deduced from the sixth-order system of 
ordinary differential equations and from the associated temporal eigenvalue problem. We 
shall present results from the integration of the diffusion problem, as partially defined in 
(2.10) and (2.11), at a later stage. 

Although the analytical and numerical methods involved are straightforward, the con- 
sequences of the results are considerable and varied. We are able to show analytically that 
the basic (stagnation) solution admits of bifurcations, of both pitchfork and transcritical 
types, and to infer the existence of both asymmetric and symmetric, but non-trivial, 
solutions. The existence of Hopf bifurcations and, as a result, of periodic solutions is 
inferred. 

Although our results are theoretical, they do suggest consequences that experimenters 
(and, indeed, workers in the area of computational fluid dynamics on a finite x-interval) may 
find helpful when recording results. We are not aware of any results for the problem 
considered in this paper although in an experiment by Siegel and Norris [10] on the free 
convection between two heated vertical plates, asymmetric and unsteady flows were ob- 
served. However, no quantitative data were presented. There is, of course, no similarity 
solution possible for their problem and the full equations (see (2.1)-(2.3)) would have to be 
solved, a task requiring considerable computing power and time. This shows the benefit of a 
similarity solution like that considered here. 

We remind the reader that our results are for two-dimensional configurations although 
clearly, in any attempt to verify certain of these predictions by experiment, the apparatus is 
of necessity three-dimensional-the length, L, of the channel in the Ox-direction and its 
width, 2H, in the Oz-direction, are finite with possibly an open end at x = L and walls at 
z = _+ H. In our analysis we have essentially assumed that h/L, h/H are sufficiently small that 
their effects on the solutions discussed above are negligible-at least in some restricted 
region of the channel. In our analysis we have exploited the Hiemenz similarity form to 
reduce the system of partial differential equations to a system of ordinary differential 
equa t ions-a  device that is useful but which loses some spatial structure. Further, the 
stability of the steady solutions has been examined within the confines of the Hiemenz form; 
such analysis does not preclude the existence of other instabilities, spatial or temporal. 

There is one special case in which the effects of the bounding walls at z = -+ H can be seen 
to have no effect on the known stable solution. If we arrange for these bounding walls to be 

ENGI 23-21 
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rigid and at the same temperature as the walls at y = -+h, then for - ~  < Ra < Ra 1 the basic 
stagnation solution is still appropriate and, we can reasonably anticipate, stable. (The same 
result holds if the walls at z = ---H are insulating.) 

However ,  in spite of these remarks, one should note that in a three-dimensional 
porous-channel investigation, Zaturska and Banks [11], it was found that the impermeable 
bounding (side) walls do affect the flow field at least in their vicinity. 

Finally, we note that the configuration in which x / L  ~ 1 but with the z-variation retained 
leads to a more complicated, but important,  problem. 

Appendix: Pr ~ 1 

The analysis presented in the body of the paper was based on the assumption of unit Prandtl 
number.  The case for general values of Pr is not fundamentally different and we give some 
results here. 

As already mentioned in §3, when/x  = 1 and s = 0 the eigenproblem (3.2) is independent  
of Pr. Consequently the values of Ra corresponding to zero eigenvalue (and trivial basic 
solution) will be the same as those of §3. We therefore deduce the important result that the 
values of Ra at which bifurcation points occur in the basic solution will be the same for all 
values of the Prandtl number.  

We next consider the eigenvalues and eigenfunctions corresponding to asymmetric bound- 
ary conditions when Ra = 0. The solution to the basic problem is then 

F = F o = 0  , G = G o = l ( l + l ~ ) - l ( 1 - / z ) y .  (A1) 

The equation for the leading-order terms (00, 4~0) when Ra = 0 can therefore be written 

- 1 . i v  

Pr sO o= 0 o , 

s~b o + ½{(1 + /z )  - (1 - /z)Y}0o + 1(1 - / z ) 0  o = ~b o , 

(A2) 

with homogeneous boundary conditions on 00, 0 0 and 4~0 at y = +-1. We find, as in §3.2 when 
Pr = 1, that there are three families of solutions: antisymmetric, symmetric and asymmetric 

modes. The first two families are as given in (3.13) and (3.14) while the asymmetric modes 

are given by 

So = _pC P r ,  0 o = c(y sin p -  sin py), 

11)0 = C{(1 -]- /,,L) ¢01 -l- (1 - Ix)4)o2}, 

(A3) 

where tan p = p,  c is a normalising factor, 

~b01 = ½ sec pV'-P~ {p - l (1  - Pr)- l (cos py cos px/-P~ - cos p cos pv'-P-@) 

+ p-2  Pr i sin p(cos px/-P-r - cos px/-P--@)} 

and 
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~bo2 = {2pZ(Pr - 1)}-~(py cos py - sin py) 

+ {p2(Pr - 1) 2 sin pV~-P-r}-1(sin py sin p ~ P r  - sin p sin p V ~ y ) .  

397 

We note,  as in §3.2, that the antisymmetric and symmetric modes are independent of Pr and 
that the effect of Pr on the eigenvalue in the asymmetric modes is a multiplicative one. We 
also point out that if Pr---~ 1 in (A3) we recover (3.15), the analogous result when Pr = 1. 

It is of interest to note two limiting forms: for 0 < Pr ~ 1 we find that 

~bol : ½{p- ' (cos  p y -  cos p) + ½(y2 _ 1) sin p } ,  

~bo2 = p-2{  ½ (sin py - py cos py) + sin py - y sin p } ,  
(A4) 

while for Pr >> 1 we obtain the limiting behaviours 

1 

~b°l ~ 2p Pr (cos p - cos py) ,  

1 
~b02 ~ ~ (py  cos py - sin py) .  

zp rr 

(A5) 

However ,  it will be seen that (A5) is not uniformly valid (e.g. the condition oh"(_+1)= 0 is 

not satisfied by the limiting form for 6) .  
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